об одном принципе неподвижной точки

Б. Н. Садовский

В настоящей заметке вводится понятие уплотняющего оператора и доказывается принцип неподвижной точки, обобщающий принцип Шаудера ([1], см. также [2]) и принцип сжатых отображений [ср. 3].

1. Пусть E — банахово пространство. Для произвольного множества $\Omega \subset E$ мы вводим понятие меры некомпактности.

Определение 1. Обозначим через $Q(\Omega)$ множество всех ϵ , при которых у множества Ω существует конечная ϵ -сеть. *Мерой некомпактности* множества Ω называют величину

$$\chi(\Omega) = \inf Q(\Omega).$$

Очевидно, мера некомпактности множества равна нулю тогда и только тогда, когда множество компактно.

Определение 2. Оператор f, действующий из банахова пространства E в банахово пространство E_1 , назовем уплотняющим, если он непрерывен и для любого ограниченного некомпактного множества $\Omega \subset E$ выполняется неравенство

$$\chi [f(\Omega)] < \chi(\Omega).$$

Например, уплотняющими операторами являются вполне непрерывные операторы, операторы сжатия, а также суммы операторов указанных двух типов.

2. Для уплотняющих операторов мы докажем теорему о неподвижной точке, аналогичную теореме Ю. Шаудера.

T е о р е м a. Eсли уплотняющий оператор f переводит выпуклое замкнутое ограниченное множество T банахова пространства E в себя:

$$f(T) \subseteq T$$
,

то он имеет в Т хотя бы одну неподвижную точку.

При доказательстве мы воспользуемся двумя леммами.

 Π емма 1. Eсли \overline{co} (Ω) есть замкнутая выпуклая оболочка множества $\Omega,$ то

$$\chi\left[\overline{\operatorname{co}}\left(\Omega\right)\right] = \chi\left(\Omega\right). \tag{1}$$

Доказательство. Равенство (1) будет, очевидно, доказано, если мы установим справедливость следующего утверждения: для любого $\varepsilon \in Q(\Omega)$ найдется компактное множество S, являющееся ε -сетью для $\overline{\operatorname{co}}(\Omega)$. Итак, пусть $\varepsilon \in Q(\Omega)$ и $\{x_1, x_2, \ldots, x_n\}$ есть ε -сеть множества Ω .

Положим $S = \text{co } \{x_1, x_2, \dots, x_n\}$. Если $y \in \text{co }(\Omega)$, то

$$y = \sum_{i=1}^{r} \alpha_i y_i \qquad (\alpha_i \geqslant 0, \ \Sigma \alpha_i = 1, \ y_i \in \Omega). \tag{2}$$

Пусть m(i) — функция, удовлетворяющая неравенствам

$$||y_i-x_{m(i)}|| \leqslant \varepsilon$$
 $(i=1,2,\ldots,r).$

элемент $x \in S$ формулой $x = \sum_{i=1}^r \alpha_i x_{m(i)}$, где коэффициенты Определим

 $a_i \, (i=1,2,\ldots,r)$ те же, что и в (2). Тогда получим

$$||y-x|| \leqslant \sum_{i=1}^r \alpha_i ||x_{m(i)}-y_i|| \leqslant \varepsilon.$$

Мы доказали, что компактное множество S является ϵ -сетью для $\operatorname{co}\left(\Omega\right)$; переход к замыканию не представляет труда.

 Π ем м а 2. В условиях теоремы существует непустое компактное множество $K \subseteq T$, удовлетворяющее соотношению

$$f(K) = K. (3)$$

Доказательство. Если $x \in T$, то последовательность $\{f^n(x); n=0,1,2,...\}$ ограничена и переводится оператором f в последовательность $\{f^n(x); n=1,2,...\}$, мера некомпактности которой равна мере некомпактности исходной последовательности. Отсюда и из определения уплотняющего оператора следует, что последовательность $\{f^n(x)\}$ компактна в E. Обозначим через K множество всех ее предельных точек. Если $y \in K$, то $y = \lim_{k \to \infty} f^{n_k}(x)$. Но тогда f(y) =

 $=\lim_{k\to\infty}\int_{-k}^{n_k+1}(x)$, так что $f(y)\in K$. Наоборот, для данной точки y мы можем найти точку $z \in K$:

$$z = \lim_{k \to \infty} f^{n_k - 1}(x),$$

 $z=\lim_{k\to\infty}f^{n_k-1}\left(x\right),$ которая удовлетворяет равенству $f\left(z\right)=y.$ Могло оказаться, что сама последовательность $\{f^{n_k-1}(x)\}$ не сходится; в этом случае мы перешли бы к сходящейся подпоследовательности. Итак, равенство (3) доказано, а из него и из определения уплотняющего оператора вытекает компактность множества К.

Доказательство теоремы. Построим трансфинитную последова**тельность** множеств $\{\Omega_{\alpha}\}$ по следующим формулам:

$$\Omega_{\mathbf{0}} = T;$$

$$\Omega_{\alpha} = \begin{cases} \overline{\operatorname{co}} f(\Omega_{\alpha-1}), & \text{если } \alpha-\operatorname{порядковое} \ \text{число} \ \ I \ \ \text{рода}; \\ \bigcap_{\beta < \alpha} \Omega_{\beta} \quad , & \text{если } \alpha-\operatorname{порядковое} \ \text{число} \ \ II \ \ \text{рода}. \end{cases}$$

Легко проверить по индукции, что для любого а справедливы следующие утверждения:

- (a) $\Omega_{\alpha} \subseteq T$;
- (б) Ω_{α} выпукло и замкнуто;
- (B) $f(\Omega_{\alpha}) \subseteq \Omega_{\alpha}$;
- (г) $K \subseteq \Omega_{\alpha}$ (K множество, фигурирующее в лемме 2).

Далее, найдется порядковое число ү (мощность которого не превосходит мощности множества всех подмножеств пространства Е), для которого справедливо равенство

$$\Omega_{\gamma+1} = \Omega_{\gamma}. \tag{4}$$

Согласно (a) — (г) Ω_{γ} — непустое выпуклое замкнутое ограниченное множе-

ство, лежащее в T и инвариантное относительно оператора f. Кроме того, Ω_{γ} компактно. Действительно, равенство (4) означает, что

$$\Omega_{\Upsilon} = \overline{\operatorname{co}} f(\Omega_{\Upsilon}).$$

Применяя лемму 1, получаем

$$\chi(\Omega_{\Upsilon}) = \chi[f(\Omega_{\Upsilon})],$$

откуда и следует компактность Ω_γ . Для множества Ω_γ выполнены все условия теоремы Шаудера — Тихонова ([4], стр. 493), поэтому непрерывный оператор f имеет в этом множестве (лежащем в T) неподвижную точку. Теорема доказана.

3. Если в определении уплотняющего оператора строгое неравенство заменить нестрогим, то заключение теоремы может оказаться неверным даже в гильбертовом пространстве. Например (этот пример по иному поводу был предложен Е. А. Лифшицом), пусть в единичном шаре пространства l_2 oneратор f задан формулой

$$f(x) = (\sqrt{1-||x||^2}, \xi_1, \xi_2, \ldots, \xi_n, \ldots).$$

Непрерывный оператор f переводит единичный шар в единичную сферу. Кроме того, он оставляет меру некомпактности каждого множества неизменной. Действительно, если элементы

$$x_i = \{\xi_{i1}, \, \xi_{i2}, \, \dots, \, \xi_{in}, \, \dots\} \qquad (i = 1, 2, \, \dots, \, r)$$
 (5)

образуют ϵ -сеть множества Ω , то компактное множество S, состоящее из элементов

$$y = \{\xi_0, \xi_{i1}, \xi_{i2}, \dots, \xi_{in}, \dots\} \qquad (\xi_0 \in [0, 1], i = 1, 2, \dots, r),$$

образует ϵ -сеть множества $f(\Omega)$. Наоборот, если элементы (5) образуют ϵ -сеть множества $f(\Omega)$, то конечная ϵ -сеть для Ω может быть составлена из векторов $y_i = \{\xi_{i2}, \xi_{i3}, \ldots\}$ $(i = 1, 2, \ldots, r)$. Итак $\chi[f(\Omega)] = \chi(\Omega)$ для любого множества Ω . Тем не менее оператор

f не имеет неподвижных точек. В самом деле, всякое решение уравнения x=f(x) [должно удовлетворять равенствам $\xi_1=\xi_2=\ldots=\xi_n=\ldots$, Для

элемента из l_2 это равносильно равенству $x=\theta$. Но $f(\theta)=(1,0,0,\ldots)\neq \theta$.

4. Қак стало известно автору, теорема о неподвижной точке для оператора, являющегося суммой сжимающего и вполне непрерывного, была впервые установлена другим методом Р. Л. Фрум-Кетковым (в обобщение результата М. А. Красносельского [3]) для случая телесного множества T.

Автор глубоко благодарен М. А. Красносельскому и участникам Воронежского семинара по функциональному анализу за обсуждение работы и полезные советы.

Воронежский государственный университет

Поступило в редакцию 6 декабря 1966 г.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1 Schauder J., Der Fixpunktsatz in Funktionalräumen, Studia math. 2 (1930), 171-
- 2. Красносельский М. А., Топологические методы в теории нелинейных ин-
- тегральных уравнений, М., Гостехиздат, 1956.

 3. Красносельский М. А., Два замечания о методе последовательных приближений, УМН 10, вып. 1 (1955), 123—127.
- 4. Данфорд Н. и Шварц Дж., Линейные операторы, М., ИЛ, 1962.